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Fault Analysis-based Logic Encryption 
Jeyavijayan Rajendran, Student Member, IEEE, Huan Zhang, Student Member, IEEE, Chi Zhang,       
  Garrett S. Rose, Member, IEEE, Youngok Pino, Senior Member, IEEE, Ozgur Sinanoglu, Member, IEEE, 

Ramesh Karri, Senior Member, IEEE 

Abstract—Globalization of the integrated circuit (IC) design industry is making it easy for rogue elements in the supply chain to pirate ICs, 
overbuild ICs, and insert hardware trojans. Due to supply chain attacks, the IC industry is losing approximately $4 billion annually. One way 
to protect ICs from these attacks is to encrypt the design by inserting additional gates such that correct outputs are produced only when 
specific inputs are applied to these gates. The state-of-the-art logic encryption technique inserts gates randomly into the design but does not 
necessarily ensure that wrong keys corrupt the outputs. Our technique ensures that wrong keys corrupt the outputs. We relate logic 
encryption to fault propagation analysis in IC testing and develop a fault analysis-based logic encryption technique. This technique enables a 
designer to controllably corrupt the outputs. Specifically, to maximize the ambiguity for an attacker, this technique targets 50% Hamming 
distance between the correct and wrong outputs (ideal case) when a wrong key is applied. Furthermore, this 50% Hamming distance target 
is achieved using a smaller number of additional gates when compared to random logic encryption. 

——————————      —————————— 

1 INTRODUCTION 
1.1 Motivation 

UE to the ever increasing complexity of constructing 
and/or maintaining a foundry with advanced fabrication 
capabilities, many semiconductor companies are becom-

ing fabless. Such fabless companies design integrated circuits 
(IC) and send them to an advanced foundry, which is usually 
off-shore, for manufacturing. Also, the criticality of time-to-
market has forced companies to buy several IC intellectual 
property (IP) blocks to use them in their systems-on-chip.  The 
buyers and sellers of these IP blocks are distributed world-
wide.  

Globalization of the IC design industry has led to several 
new kinds of attacks on hardware. An attacker, anywhere in 
the design flow, can reverse engineer the functionality of an 
IC/IP [1, 2]. He/she can then steal and claim ownership of the 
IP [3]. An untrusted IC fabrication company may also over-
build ICs and sell them illegally. Finally, rogue elements in 
foundries may insert malicious circuits into the design without 
the designer’s knowledge [4]. Due to such attacks, the semi-
conductor industry loses $4 billion annually [1, 2]. Such at-
tacks have led IP and IC designers to re-evaluate trust in 
hardware [4]. 

While the IC design flow spans many countries, not all 
countries have strict laws against intellectual property theft. 
As reported in [5], only a few countries such as USA and Ja-
pan have strict laws to protect IC designs against intellectual 
property theft. Thus, every IC/IP designer bears an additional 
responsibility to protect his/her design. If a designer is able to 
conceal the functionality of an IC while it passes through the 
different, potentially untrustworthy phases of the design flow, 
these attacks can be thwarted [6, 7]. For this purpose, re-

searchers have proposed a technique called logic encryption. 

1.2 Logic Encryption  
Logic encryption1 hides the functionality and the imple-

mentation of a design by inserting some additional gates 
called key-gates into the original design. In order for the design 
to exhibit its correct functionality (produce correct outputs), 
the valid key has to be supplied to the encrypted design. Upon 
applying a wrong key, the encrypted design will exhibit a 
wrong functionality (produce wrong outputs).  

Logic encryption techniques can thwart an untrusted 
foundry from illegally copying, reverse engineering, overpro-
ducing the IC design [3,5-8,11], and Trojan insertion [12]. As 
shown in Fig. 1, the IP provider and the designer are trusted. 
The foundry is not trustworthy or there is a rogue element in 
the foundry. The designer encrypts the modules using the 
proposed technique, synthesizes them using trustworthy 
computer-aided design tools, and sends the generated layout 
masks to the untrustworthy foundry. The key-inputs of the 
key-gates are connected to the data lines of a tamper-proof 
memory. When the designer sends the encrypted design to the 
foundry, he does not load the secret key into this memory as it 
can be recovered by an attacker in the foundry.  

The foundry manufactures the IC and returns them to the 
designer. The designer then loads the secret key into the tam-
per-proof memory and makes the ICs functional. To prevent a 
user from reading out the secret key from the memory, the 
designer removes read/write access to this memory by blow-
ing out the fuses in the read/write circuit. Furthermore, to 
prevent an attacker from reading-out the contents of the 
memory, it is designed to be tamper-proof. The designer or a 
trusted third party performs functional validation and manu-
facturing testing on this functional IC. Once they pass these 
tests, the functional ICs are packaged and sold.  

D 
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An attacker in the foundry has access to the layout. He can 
copy the layout and overproduce the ICs (black-box usage).  
Alternatively, he can reverse engineer the netlist from the lay-
out and reuse this netlist. Logic encryption seeks to prevent 
these attacks by encrypting all or critical modules in a design. 
Since the design is encrypted by the designer, the lack of the 
secret keys by the foundry renders any copies or overpro-
duced ICs unusable. The attacker does not have access to good 
functional input-output pairs (as the design has already been 
encrypted previous to his access to the layout). Further, the 
attacker does not have access to the RTL and the test vectors. 
Unlike obfuscation techniques [3,5-8,11,12], logic encryption 
protects against black-box usage and reverse engineering. 

Though their application may differ depending up on the 
target attack, any logic encryption technique should satisfy 
two criteria [6,7,11,12 ]: (1) wrong outputs should be produced 
on applying a wrong key, and (2) an attacker should not be 
able to retrieve the secret key. On inserting a sufficient number 
of key-gates, it becomes computationally infeasible for an at-
tacker to determine the secret key. In this work, we propose 
fault analysis-based logic encryption to satisfy the first criteri-
on. The proposed technique enables the designer to controlla-
bly corrupt the outputs.  

1.3 Contributions 
Previously proposed logic encryption techniques insert 

key-gates at random locations in a design [6,7] (Section 7 de-
scribes these techniques in detail). We show that when gates 
are inserted randomly into the design, a wrong key may not 
necessarily affect the output as its effects may not be propa-
gated to the outputs.  

We then overcome this problem by relating it to an IC test-
ing scenario where the effect of a fault may not propagate to 
the output. Furthermore, we also analyze how fault-analysis 
techniques such as fault activation, fault propagation, and 
fault masking can help perform stronger logic encryption.  

We then leverage traditional IC testing algorithms to per-
form logic encryption. Our technique uses conventional fault 
simulation techniques and tools such as HOPE [10] to guide 
key-gate insertion and corrupt the output bits on applying a 
wrong key. 

We also use 2:1 multiplexers (MUXes) as key-gates. We use 
fault-analysis techniques to guide MUX insertion.  

The proposed techniques are analyzed by comparing the 
Hamming distance between the outputs on applying the valid 
key and a wrong key. The area, power, and delay overhead of 
the proposed techniques are reported.  

We acknowledge the scenario where a designer has a lim-
ited power, delay, or area overhead budget for logic encryp-
tion. Hence, we also analyze the ability to produce wrong out-
puts for a given power/delay/area overhead for different log-

ic encryption techniques.  
Our work has the following unique features that differenti-

ate it from the previous work: 
1. Analyzes logic encryption from IC testing perspective.  
2. Uses test principles to relate invalid key-bits to corrupted 
outputs. 
3. The proposed fault-analysis approach is generic as it can be 
applied to any logic encryption mechanism.  

1.4 Organization 
Section 2 describes a metric for logic encryption followed 

by Section 3 with a motivating example explaining the necessi-
ty of the proposed work. Section 4 details the relationship be-
tween IC testing and logic encryption and proposes an algo-
rithm to insert XOR gates and MUXes for logic encryption. 
Section 5 explains how to perform logic encryption when the 
available resources (power, area, delay overheads) are con-
strained. Discussions on security and limitations of the pro-
posed technique are listed Section 6. Section 7 describes the 
previous work on logic encryption. Section 8 concludes the 
paper.  

2. METRIC FOR LOGIC ENCRYPTION 
The defender (designer) has to prevent his IP from being 

copied by an attacker in the foundry and to prevent black-box 
usage.  The attacker does not know the secret key used for 
encryption. Hence, he will apply a random key and in turn 
expect the module to become functional (i.e. to produce cor-
rect outputs). If he is lucky and if the module indeed produces 
correct outputs even when a random wrong key is applied, 
then it benefits him. If he is not lucky, the attacker has to try 
another key combination. Increasing the key-size increases the 
effort of an attacker. Thus, the objective of the defender is to 
make it harder for an attacker to retrieve the secret key. To 
make this happen, the defender needs the encrypted design to 
produce wrong outputs on applying a wrong key. 

 
To formalize this, consider the system shown in Fig. 2. The 

system has an M-bit input, N-bit output, and is encrypted with 
K key bits. These bits are either logic ‘1’ or ‘0’. Let B = {0,1}. Let 
x ∈ BM be a functional input. Let y ∈ BN be the correct output. 
Let c ∈ BK be the correct key. 
  A module f encrypted with a key c should behave as fol-
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Fig. 1. An IC design flow enhanced with logic encryption capabilities to thwart IC piracy [6,7]. Before sending the design to an untrusted found-
ry, the designer encrypts the design using logic encryption techniques. The foundry then manufactures this encrypted design. On receiving the 
encrypted hardware, the IC designer activates it by applying the secret key and the IC is then sold in the market.  

 
Fig. 2. A system with an encrypted module.  
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lows: 
1. On applying the correct key c, the module produces correct 
outputs for all input patterns.  
f(x,z)|z=c = y  ∀ x ∈ BM, y ∈ BN  
2. On applying a wrong key, the module produces wrong out-
puts for all input patterns.  
f(x,z)|z≠c = y’  ∀ x ∈ BM, z ∈ BK, y’∈ BN, where y’ ≠ y. 
 The Hamming distance between y’ and y (HD(y,y’)) can 
measure the difference between a correct output y and the 
corresponding wrong output y’.  If HD(y,y’) = 0, then the out-
puts of the encrypted module are correct independent of the 
applied key. Thus, the corresponding encryption is weak. If 
HD(y,y’) = N, then the wrong outputs  of the encrypted design 
are still correlated to the original outputs, but this time in-
versely. The corresponding encryption is still weak and the 
attacker can obtain the correct output by complementing the 
output.  
 A defender has to encrypt the module such that an attacker, 
with the knowledge of the publically available logic encryp-
tion objectives and algorithms, is not able to obtain the correct 
outputs by applying a wrong key. This can be done by mini-
mizing the correlation between the corrupted and the original 
outputs, and thus by maximizing the ambiguity for the attack-
er. If there are P output-bit combinations that an attacker is 
forced to consider corresponding to every input combination, 
then larger values of P imply greater ambiguity for the attack-
er. Obviously, a defender has to maximize P. This is analogous 
to traditional cryptography, where increasing the key-size 
increases the ambiguity for an attacker.  
 If Q-out-of-N output bits are wrong (i.e. HD(y,y’) = Q), then P 
can be computed as �N

Q�.  

 If Q=0 (i.e. HD(y,y’) = 0), then P = 1; it benefits the attacker. 
If Q=N (i.e. HD(y,y’) = 0), then P = 1; it benefits the attacker. P 
is maximum when Q = N/2 (i.e. when HD(y,y’) = N/2).  
 Fig. 3 plots the number of combinations (P) that an attacker 
has to consider for key size N (=128) for different values of Q. 
P is maximum when Q = 64. Thus, the ambiguity for an at-
tacker will be maximum when HD(y,y’) = N/2. Hence, the 
logic encryption technique should insert key-gates such that 
the HD between the outputs on applying the correct key and 
the wrong key (HD(y,y’)) is N/2, i.e., 50% of the output bits 
should be corrupted on applying a wrong key.  
 The proposed fault analysis approach enables a designer to 
have control over the corruption effects of a logic encryption 
technique. Certain designs may benefit from lower levels of 
HD (by corrupting certain targeted parts of the design, or tar-
geted outputs). The proposed fault-analysis approach pro-
vides the control needed even in these situations, thus making 

the necessary key gate insertions to achieve the targeted cor-
ruption. 

3. MOTIVATIONAL EXAMPLE 
Let us consider the combinational logic encryption tech-

nique proposed in [6,7]. In this technique, XOR/XNOR gates 
are inserted at random locations. For instance, consider the 
C17 circuit shown in Fig. 4 encrypted with one XOR-gate, E1. 
This gate is inserted at the output of gate G2 which is part of 
the original design.  

The design will produce the correct output on applying the 
correct key value, K1 = 0. On applying a wrong key (K1 = 1), 
wrong outputs are produced. For example, on applying the 
input pattern “01000”, a wrong output “00” is produced in-
stead of the correct output “10”.  

Unfortunately, the design produces correct outputs for cer-
tain input patterns even on applying a wrong key. For exam-
ple, the input pattern “11100” produces the correct output 
“11” even with a wrong key applied. In fact, this design pro-
duces a wrong output only for twelve input patterns out of the 
possible 32 input patterns. In other words, the design produc-
es correct outputs for 75% (24) of the input patterns despite 
applying the wrong key. Thus, this encryption procedure is 
weak as it does not ensure wrong outputs are produced for 
wrong keys, let alone 50% HD criterion. In this work, we pro-
pose a technique that will not only guarantee wrong outputs 
for wrong keys but also meets 50% HD criterion. 

4 FAULT ANALYSIS-BASED LOGIC ENCRYPTION 
4.1 Logic encryption: a fault analysis perspective 

We will now describe our technique to encrypt a design us-
ing key-gates (e.g., XOR/XNOR) in such a way that any wrong 
key causes a wrong output. This is similar to the situation 
where a circuit produces a wrong output when it has a fault 
that has been excited and propagated to the outputs. The fol-
lowing observations relate logic encryption and fault analysis in 
IC testing. We will use these observations to insert XOR/XNOR 
gates. 

 Fault excitation: Application of a wrong key can be associat-
ed with the activation of a fault. For a wrong key, either a stuck–
at–0 (s–a–0) or stuck–at–1 (s–a–1) fault will get excited when 
key-gates are used for encryption. 

Consider the C17 circuit encrypted with one XOR gate (E1) 
as shown in Fig. 5(b). Here, E1 is the key-gate. If a wrong key 
(K1=1) is applied to the circuit, the value of net B is the negated 
value of net A. This is the same as exciting an s-a-0 (when A=1) 

 
Fig. 3. Number of combinations (P) that an attacker has to 
explore when key size N =128 for different values of Q. A sys-
tem with an encrypted module.  
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Fig. 4. A circuit encrypted with one XOR-gate (E1). The valid key is 
K1=0. However, the design produces correct outputs (HD = 0) for 24 
inputs patterns out of the 32 possible input patterns. 
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or s-a-1 (when A=0) fault at the output of G7 as shown in Fig. 
5(a). Please note that s-a-0 (s-a-1) fault activation can be attribut-
ed to the case where the net in question is supposed to yield a 
value of 1 (0) during the functional mode of operation.  

Fault propagation: Not all wrong keys can corrupt the out-
put as the effects of a wrong key may be blocked for some of the 
input patterns. This is similar to the scenario where not all input 
patterns can propagate the effect of a fault to the output [20]. 

Consider the circuit shown in Fig. 5(b). Let a wrong key (K1 
= 1) be applied to the circuit. For the input pattern 00000, an s–
a–0 fault gets excited at the output of E1 and propagates to both 
outputs. The value at the output of E1 is 0 instead of 1, and the 
output is 11 instead of 00. 

For the input pattern 01110, even though the s–a–0 fault gets 
excited at the output of E1, the output is 11, which is   the cor-
rect output, as the fault effects have been blocked. 

To propagate the effect of an excited fault, in our case the 
wrong key, non-controlling values should be applied to the 
other inputs of the gates that are on the propagation path of 
the fault. Since not all input patterns guarantee the non-
controlling values on the fault propagation path, a wrong key 
will not always corrupt the output. 

Fault masking: Inserting a single key-gate and applying a 
wrong key is equivalent to exciting a single stuck-at fault. 
Likewise, inserting multiple key-gates and applying a wrong 
key is equivalent to simultaneously exciting multiple stuck-at 
faults. 

However, when multiple faults are excited, they might 
mask one another. Therefore, in logic encryption, when multi-
ple key-gates are inserted, the effect of one key-gate might 
mask the effect of other key-gates. 

Consider the encrypted circuit shown in Fig. 5(c). When the 
key bits are 000, the correct functional output is 00 for the in-
put pattern 00000. However, if the key bits are 111 (wrong 
key), the effect introduced by the XOR gate, E1, is masked by 
the XOR gates E2 and E3. Consequently, the design produces 
the correct output, 00. Similar to fault masking in IC testing, 
the effect of one XOR gate is masked by the effect of the other 
two XOR gates. 

Even though the above scenario corresponds to masking 
the effects of faults (key-gates), the typical scenario in IC test-
ing occurs when the effects of the same fault cancel due to re-
convergent fan-out structures. Fault masking occurs despite 
the single fault assumption in IC testing.  

Goal: Insert the key-gates such that a wrong key will affect 
50% of the outputs for any input pattern. In terms of fault 
simulation, this goal can be stated as finding a set of faults 

which together will affect 50% of the outputs for a wrong key 
on applying an input pattern. 

Challenge: Fault simulation tools rely on the assumption of 
a single stuck-at fault model (only one fault can be present at 
any time). Thus, existing commercial fault simulation tools can 
be used to insert only one key-gate at a time. We overcome 
this challenge by using a greedy iterative approach where key-
gates are inserted iteratively. In every iteration, the fault that 
has the potential of propagating to a maximum number of 
outputs dictates the location of the key-gate to be inserted. For 
every iteration (except the first), the key-gates inserted at pre-
vious iterations are provided with random wrong keys there-
by emulating a multiple stuck-at fault scenario and accounting 
for all previous key-gate insertions. An algorithm is presented 
in the subsection 4.2.3 to perform this logic encryption. 

4.2 Logic Encryption using XOR/XNOR gates 

4.2.1 Fault Impact 
To insert an XOR/XNOR as a key-gate, we need to deter-

mine the location in the circuit where, if a fault occurs, it can 
affect most of the outputs for most of the input patterns. To 
determine this location, we use fault impact defined by (1). 
From a set of test patterns, we compute the number of patterns 
that detect the s-a-0 fault (NoP0) at the output of a gate Gx and 
the total number of output bits that get affected by that s-a-0 
fault (NoO0). Similarly, we compute NoP1 and NoO1 for s-a-1 
faults. 

Fault Impact =  (𝑁𝑁𝑁0 ∙ 𝑁𝑁𝑁0 +  𝑁𝑁𝑁1 ∙ 𝑁𝑁𝑁1)     (1) 
By inserting an XOR/XNOR key-gate at the location with 

the highest fault impact, an invalid key will likely have the 
most impact on the outputs (i.e., the wrong outputs appear), 
indirectly enabling the logic encryption technique to reach the 
50% Hamming distance metric.  

4.2.2 User-defined key 
A designer can use either an XOR or XNOR gate as a key-

gate. However, an attacker can easily determine the value of 
the key-bit. The value of the correct key-bit is ‘0’ in case of 
XOR gates and ‘1’ in the case of XNOR gates. Hence, to de-
ceive an attacker, a designer can add an inverter at the input 
or output of every key-gate. If the key-bit is ‘0’, then the key-
gate structure can be either ‘XOR- gate’ or ‘XNOR-gate + in-
verter’. Similarly, if the key-bit is ‘1’, then the key-gate struc-
ture can be either ‘XNOR-gate’ or ‘XOR-gate + inverter’. The 
synthesis tools can bubble push2 the inverters added for logic 
encryption. An attacker cannot identify which inverters are 
part of the original design and which are inserted for logic 
encryption.   

2Techniques for bubble pushing are described in [24]. 

I4

I5

I3

I2

I1

O1

O2

G1

G2

G3

G4

G5

G6

G7

G8
G9

G10

Xstuck-at-0

I4

I5

I3

I2

I1

O1

O2

K1
G1

G2

G3

G4

G5

G6

G7

G8

E1

G9

G10

A

B

I4

I5

I3

I2

I1

O1

O2

K1
G1

G2

G3

G4

G5

G6

G7

G8

E1

G9

G10

E2

E3

K2
K3

 
        (a)                                                                      (b)                    (c) 

Fig. 5. Relation between logic encryption and IC testing – (a) fault excitation, (b) propagation, and (c) masking. 
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4.2.3 Algorithm to insert XOR/XNORs 
Algorithm 1 greedily selects the best ‘N’ locations in a cir-

cuit to insert the XOR/XNOR key-gates. The algorithm has 
two parts – location selection phase and modification phase. In 
the location selection phase, the location with the highest fault 
impact is calculated and an XOR gate is inserted at that loca-
tion. The algorithm considers the previously inserted XOR 
gates in this calculation. This phase terminates on inserting as 
many key-gates as that of the length of the user-defined en-
cryption key.  

In the modification phase, the inserted XOR gates are either 
retained or modified to XNOR gates. In addition, inverters are 
added to the output of randomly selected XOR/XNOR gates 
such that the user-defined encryption key correctly unlocks 
the design.  

Consider encrypting the C17 circuit, shown in Fig. 5(a), us-
ing the above algorithm. The NoP0, NoO0, NoP1, and NoO1 
values for different nodes in the circuit, on applying 1000 ran-
dom input patterns, are listed in Table 1. In addition, the cor-
responding fault impact values calculated using (1) are also 
listed. Based on the fault impact value, gate G7 is selected as 
the best location to insert the key-gate, E1, for the first itera-
tion. Similarly, for the subsequent iterations the corresponding 
XOR/XNOR gates are inserted using Algorithm 1. 

4.3 Logic Encryption using Multiplexers  

4.3.1 Key Idea 
In MUX-based encryption, MUXes are inserted such that 

one input of the MUX will be the true (original) wire in the 
design. The second input to the MUXr, referred as the false 
input, is another wire in the design. The select line of the MUX 
is the associated key bit. On applying the correct key bit, the 
true wire is selected, retaining the correct functionality of the 
design; otherwise, the functionality is modified by selecting 
the false wire. 

The true wire can be connected to either the first or the sec-
ond input of the MUX. This enables the possibility of the cor-
rect key bit (select line) to be either 0 or 1. This leads to the 
following dilemma for an attacker: is the true wire connected 
to the first or the second input of the MUX? While logic en-
cryption using XOR/XNOR gates requires additional inverters 
to create the dilemma, MUXes create that dilemma inherently. 

Similar to XOR-based encryption, MUX-based encryption 
can also be related to IC testing principles such as fault activa-
tion, fault propagation, and fault masking.  

Fault activation: In MUXes, on applying a wrong key, the 
false wire will be selected instead of the true wire. However, 
the corruption effect will not happen when the two wires have 
identical values, preventing excitation. This is different from 
XOR-based encryption where fault activation is always guar-
anteed on applying a wrong key. 

Consider the C17 circuit encrypted with one MUX (E1) as 
shown in Fig. 6. If a wrong key (K1=1) is applied, the value of 
net Y is the false value of the wire F instead of the true value 
of the wire T. For the input pattern 1X110, the values on T and 
F are both 0’s. On applying a wrong key, a s-a-0 fault is excited 
at the output of G7. For the input pattern 1X100, the values on 
T and F are 0 and 1, respectively. On applying a wrong key, a 
s-a-1 fault is excited at the output of G7. However, for the in-

Algorithm 1: Fault analysis-based insertion of 
XOR/XNOR gates  

Input: Netlist, KeySize, EncryptionKey 
Output: Encrypted netlist 
// Location Selection Phase 
for i ← 1 to KeySize do 

foreach gate j ∈ Netlist do 
Compute FaultImpact; 

end 
Select the gate with the highest FaultImpact; 
Insert XOR gate and update the Netlist; 
Apply Test Patterns; 

end 
// Modification Phase 
Generate R ;       //a random number 
foreach bit i ∈ R do 

if i == 1 then  
Insert an inverter at the o/p of corresponding key-
gate; 

end 
end 
GateType = EncryptionKey ⊕ R; 
foreach bit i ∈ R do 

if i == 1 then 
Replace the XOR key-gate with an XNOR key-gate; 

end 
end 
 

 

TABLE 1 
FAULT IMPACT VALUE OF DIFFERENT NODES IN C17 CIRCUIT 

SHOWN IN FIG. 5 (A) 

Node NoP0 NoO0 NoP1 NoO1 
Fault  

Impact 
G1 193 274 150 216 85282 
G2 88 88 79 79 13985 
G3 89 89 85 85 15146 
G4 89 89 55 55 10946 
G5 304 473 85 114 153482 
G6 89 89 195 195 45946 
G7 193 274 267 391 157279 
G8 88 88 196 196 46160 
I1 150 216 193 274 85282 
I2 79 79 88 88 13985 
I3 85 85 89 89 15146 
I4 142 199 131 173 50921 
I5 112 147 85 114 26154 
O1 196 196 304 304 130832 
O2 195 195 305 305 131050 

 

I4
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I3

I2

I1

O1

O2

K1
G1

G2

G3

G4

G5

G6

G7
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E1

G9

G10

T Y

F

 
Fig. 6. A circuit encrypted with one multiplexer (E1).  The false wire is 
shown as a dotted line. The logic value in the true and the false wires 
differ for 16 input patterns out of the total 32 input patterns. 
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put 1X110, the values on T and F are 0 and 0, respectively. On 
applying a wrong key, no fault is excited at the output of G7.  

The effects of fault-propagation and fault-masking princi-
ples on MUX-based encryption are similar to that of XOR-
based encryption. Hence, they are not repeated. However, the 
effect of fault activation in these two techniques is different; 
XOR-based encryption always guarantees fault activation 
whereas MUXes do not.  

4.3.2 Fault analysis-based insertion of MUXes 
Similar to XOR-based encryption, MUXes can be inserted at 

the output of gates whose fault metric is the highest. The out-
put of the selected gate will act as the true wire. However, a 
designer needs to carefully select the false wire. This is because 
fault excitation in MUX-based encryption will happen only if 
the value on the true wire is different from the value on the 
false wire.  

While one can select the true and false wires based on the 
number of input patterns for which the value at those wires 
differ, such a method is computationally expensive. It requires 
a designer to apply all possible input patterns or at the least it 
requires O(N2) comparisons between the outputs of all the 
gates, where N is the number of gates in the design. Hence, we 
propose the following metric to select the false wire for MUX 
key-gate insertion. 

While the true wire is selected based on the fault-impact 
metric, the false wire is selected based on another metric called 
Contradiction Metric3. This metric aims at maximizing the 
probabilities of having different values on the true and the 
false wires and is given as: 

Contradiction Metric =  �P0,true  ×  P1,false � + �P1,true  ×
 P0,false �,       (2) 
where P0,true and P1,true are the probabilities of getting a 0 and 1 
on the true wire, respectively. P0,false and P1,false are the proba-

bilities of getting a 0 and 1 on the false wire, respectively. 
Computing these probabilities requires O(N) computations for 
a design with N gates [20].  

In addition to this metric, the designer should also select 
the false wire that will not result in a combinational loop with 
the true wire. This is because combinational loops are rare in a 
design except in the cases of flip-flops, latches, and ring oscil-
lators. If a designer selects the false wire such that it forms a 
combinational loop with the true wire, an attacker can easily 
determine that the “feedback” wire is the false wire. Conse-
quently, he can identify the corresponding key bit.  

Consider the circuit shown in Fig. 6. Here, the output of 
gate G7 is chosen as the true wire and the output of gate G6 is 
chosen as the false wire. On an applying an input pattern 
0X11X, the value of the true wire is ‘1’, while the value of the 
false wire is ‘0’. In fact, the values of true and false wires differ 
for 16 input patterns.  

4.3.2 Algorithm to insert MUXes 
Algorithm 2 greedily selects the best ‘N’ locations in a cir-

cuit to insert the MUXes. Similar to Algorithm 1, Algorithm 2 
has two parts: the location selection phase and the modifica-
tion phase. In the location selection phase, the location with 
the highest fault impact is calculated and it is selected as the 
true wire. Then, a list of wires that do not form a combination-
al loop with the true wire is formed. The contradiction metric 
of the wires within this list is calculated using (2). The gate 
with the highest contradiction metric is selected as the false 
wire. A MUX is then inserted at the true wire location. The 
true and false wires are connected to the first and second input 
of the MUX. In the modification phase, the input order of a 
MUX is rearranged depending upon its key bit.  

Consider encrypting C17, shown in Fig. 5(a), using the 
above algorithm. The output of G7 is selected as the true wire 
based on the fault impact values shown in Table 1. Table 2 lists 
the contradiction metric of the wires that do not form a combi-
national loop with G7. The output of G5, which has the highest 
contradiction metric, is selected as the false wire. A MUX is then 
inserted at the output of G7. For the subsequent iterations the 
corresponding MUXes are inserted using Algorithm 2. Note 
that in Table 2, the best contradiction metric achieved for C17 is 
0.57. This value is much less than the ideal value of .   

3To reduce delay overhead, one can constrain the algorithm to select the 
true and false wires from non-critical paths. 

Algorithm 2: Fault analysis-based insertion of 
MUXes  
Input: Netlist, KeySize, EncryptionKey 
Output: Encrypted netlist 
// Location Selection Phase 
for i ← 1 to KeySize do 
foreach gate j ∈ Netlist do 
Compute FaultImpact; 
end 

Select the gate with the highest FaultImpact as the true 
wire; 
ListOfFalseWires = Φ; 

foreach wire j ∈ Netlist and j≠ true wire do 
if CombinationLoop(j,true wire) == False then 

ListOfFalseWires=ListOfFalseWires U j; 
Compute Contradiction metric; 
end 
end 

Select the wire with the highest contradiction metric as 
false wire 

Insert MUX and update the Netlist; 
Apply Test Patterns; 
end 
// Modification Phase 
foreach bit i ∈ EncryptionKey do 
if i == 1 then 

Connect true and false wires to the second and first 
inputs of the MUX; 

end 
end 
 

 

TABLE 2 
CONTRADICTION METRIC VALUES OF DIFFERENT NODES IN 

C17 CIRCUIT ON SELECTING G7 AS THE TRUE WIRE. 
 

Node 
P0, false P1, false 

Contradiction 
metric 

I1 0.5 0.5 0.5 
I2 0.5 0.5 0.5 
I3 0.5 0.5 0.5 
I4 0.5 0.5 0.5 
I5 0.5 0.5 0.5 
G1 0.5 0.5 0.5 
G2 0.5 0.5 0.5 
G3 0.5 0.5 0.5 
G4 0.5 0.5 0.5 
G5 0.27 0.75 0.57 
G6 0.75 0.25 0.4375 
G8 0.625 0.375 0.46875 
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 (a)                                                                                                (b) 

 
(c)                                                                                                (d) 

Fig. 7. Hamming distance between the outputs of designs on applying the correct key and a random wrong key: (a) Random insertion of 
XORs in ISCAS designs [6,7,11], (b) fault analysis-based insertion of XORs in ISCAS designs, (c) random insertion of XORs in OpenSPARC 
[6,7,11], and (d) fault analysis-based insertion of XORs in OpenSPARC units. 

 
(a)                                                                                                (b) 

 
(c)                                                                                                (d) 

Fig. 8. Hamming distance between the outputs of designs on applying the correct key and a random invalid key: (a) Random insertion of 
MUXes in ISCAS designs, (b) fault analysis-based insertion of MUXes in ISCAS designs, (c) random insertion of MUXes in OpenSPARC 
units, and (d) fault analysis-based insertion of MUXes in OpenSPARC units. 
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4.4 Results 

4.4.1 Experimental setup 
The effectiveness of the proposed technique is analyzed us-

ing ISCAS-85 combinational and ISCAS-89 sequential bench-
marks. We analyzed the performance of the logic encryption 
techniques on OpenSPARC T1 Processors [25]. In case of pro-
cessors, not all the modules need to be encrypted. Since the 
designer's valuable IP is typically in the controllers, one can 
encrypt only the controllers. A side benefit of encrypting con-
trollers is that they are usually small (<1%) [3]. Consequently, 
the overhead due to encrypting the controllers will be negligi-
ble at the system level. 

We used the HOPE fault simulation tool [10] to calculate 
the fault impact of each gate. We applied 1000 random input 
patterns to a netlist and observed the true outputs. We set the 
maximum key size as 128 bits. We then calculated the fault 
impact for all possible faults in the circuit. We applied valid 
and random wrong keys to an encrypted netlist and deter-
mined the HD between the corresponding outputs4. The area, 
power, and delay overhead were obtained using Cadence RTL 
Compiler. 

4.4.2 Hamming distance analysis  
The fault analysis based approach is compared with the 

random insertion approach [6,7] and the corresponding results 
are shown in Fig. 7 and Fig. 8. Let us analyze the performance 
of the encryption gates when they use XOR/XNOR gates (Fig. 
7). Fig. 7(a) and Fig. 7(c) show the results of random insertion 
of XOR/XNOR gates in ISCAS and OpenSPARC designs, re-
spectively. The results of fault analysis-based insertion of 
XOR/XNOR gates in ISCAS and OpenSPARC designs are 
shown in Fig. 7(b) and Fig. 7(d), respectively. 

When the XOR/XNOR gates are randomly inserted (Fig. 
7(a) and Fig. 7(c)), 50% HD is not achieved. Fault masking is 
the main reason for this poor performance. The effects of 
wrong keys are blocked for most of the input patterns as dis-
cussed in Section 4. However, fault analysis based insertion 
(Fig. 7(b) and Fig. 7(d)), achieves 50% HD for all benchmarks 
except for C5315, C7552, and OpenSPARC controllers. The 
number of outputs in benchmarks is very high (>100) and 
hence it is hard to achieve 50% HD. However, the fault analy-
sis based approach performs well in all the other benchmarks 

including sequential designs as it takes fault masking effects 
into account. 

The slope of the lines in Fig. 7 and Fig. 8 indicates the per-
formance of the random and the fault analysis based inser-
tions. If the line is steeper, 50% HD can be achieved with a 
smaller number of additional key-gates; hence power, area, 
and performance overhead will be smaller. Fault analysis 
based logic encryption has a smaller overhead than the ran-
dom insertion as it uses a smaller number of additional gates 
to achieve the target HD. 

In fault analysis based logic encryption, once a design 
achieves 50% HD, its HD value does not deviate more on in-
serting more gates. Hence, one can increase the key size with-
out deviating from the 50% HD mark. 

Let us analyze the performance of MUX-based encryption. 
Fig. 8(a) and Fig. 8(c) show the results of random insertion of 
MUXes in ISCAS and OpenSPARC designs, respectively. The 
results of fault analysis-based insertion of MUXes in ISCAS 
and OpenSPARC designs are shown in Fig. 8(b) and Fig. 8(d), 
respectively. In MUX-based encryption (Fig. 8), the fault is not 
always excited as it requires the logic value on the false wire to 
be different from that on the true wire. This is the main reason 
why MUX-based encryption is not able to achieve 50% HD. 
However, fault-analysis-based insertion (Fig. 8(b) and 8(d)) of 
MUXes still yields a better HD than random insertion of 
MUXes (Fig. 8(a) and Fig. 8(c)). Unfortunately, a higher num-
ber of MUXes are required than are XOR gates to achieve the 
50% HD mark.  

Table 3 compares the best HD (the one that is close to 50%) 
and the number of key-gates required to achieve that HD be-
tween the random and fault analysis based logic encryptions. 
It can be seen that, in the case of XOR gates, on average, fault 
analysis based logic encryption achieves the 50% HD value 
with a key size that is four times less than that of random in-
sertion. In the MUX based approach, on average, fault analysis 
based logic encryption achieves a HD value which is close to 
the 50% mark, while the random insertion technique achieves 
only 25% HD. This is because fault analysis based logic en-
cryption identifies more effective locations to insert the gates 
than the random insertion based logic encryption. The per-
formance of the XOR- and MUX-based insertions differ be-
cause XOR/XNOR gates always guarantee fault activations 
whereas MUX-based insertion cannot guarantee fault activa-
tion. 4In case of sequential designs, we not only corrupt the outputs but also 

the FSM state bits. Since the state values are stored in the flip-flops, we 
considered each flip-flop as a pseudo output to evaluate the HD. 

TABLE 3 
THE BEST HAMMING DISTANCE ACHIEVED (CLOSE TO 50% MARK) AND THE NUMBER OF KEY-GATES REQUIRED TO ACHIEVE THAT DIS-

TANCE FOR DIFFERENT LOGIC ENCRYPTION TECHNIQUES  
Logic Encryption C432 S510 S641 S838 S5378 C5315 C7552 S9234 
Random–XOR[6,7,11] 50/110 39/67 37/104 55/28 29/128 27/124 20/126 14/118 
FA-XOR 50/16 50/42 50/29 50/2 50/106 48/109 50/55 50/39 
Random-MUX 43/112 50/49 30/126 50/58 27/128 14/116 13/107 11/111 
FA-MUX 50/9 50/46 50/46 50/26 50/110 43/109 38/102 43/92 

 
Logic Encryption Decoder LSU R/W FPU In Excp. Handler FPU Div. Store buffer Inst. Fetch queue Thread switch 
Random–XOR[6,7,11] 25/113 21/128 29/125 15/124 26/127 20/124 14/127 12/126 
FA-XOR 49/117 46/128 41/100 44/125 44/124 46/127 39/126 38/125 
Random-MUX 16/128 22/128 22/126 8/127 12/127 12/125 8/127 6/125 
FA-MUX 49/119 35/124 48/117 39/127 44/124 43/127 33/117 36/126 
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4.4.3 Power, Area, and Delay Overhead 
Fig. 9 shows the power, delay, and area overhead of the 

benchmarks that are encrypted with the number of key-gates 
listed in Table 3 using random insertion [6,7,11] and the pro-
posed fault-analysis based insertion. 

In all cases shown, the following three trends are observed. 
First, the random insertion of key-gates (XORs and MUXes) 
takes more overhead to achieve their highest HD. Specifically, 
the fault analysis-based insertion of key-gates takes much less 
overhead when compared to their random insertion counter-
parts.  

Second, the overhead of the MUX-based method is more 
than that of the XOR-based method irrespective of the encryp-
tion technique. There are two reasons for this. The first is, as 
mentioned before, the MUX-based encryption technique takes 
more key-gates to achieve the target HD than the XOR-based 
encryption technique because of non-guaranteed fault activa-
tion. The second reason is the standard cell implementation of 
MUX in the 45nm library uses NAND gate-based implementa-
tion of MUXes. This type of implementation consumes more 
power, increases delay and occupies more area. The power, 
area and delay overhead of MUXes would have been better if 
the standard cell library had a transmission gate-based MUX.  

Finally, the overhead is very high for smaller designs 

(<2000 gates) such as C432, S510, S641, and for some Open-
SPARC units. This is because even a mere 30 additional XOR 
gates required for logic encryption is on the order of the total 
number of gates used to construct these small circuits. Con-
versely, in case of large designs (>3000 gates), the overhead for 
fault analysis-based techniques (both XOR and MUX) is less 
than 5%.  This highlights that the fault analysis-based encryp-
tion is highly feasible and does not cause much overhead es-
pecially for larger designs. Furthermore, since we are encrypt-
ing only the controllers, which occupy only a tiny part (1% 
[3]), the overhead will be negligible at system level.  

5 RESOURCE-CONSTRAINED LOGIC ENCRYPTION 
In certain scenarios, a designer can only offer a limited 

power, area, or delay overhead for logic encryption. Hence, it 
is necessary to identify the security offered in relation to sub-
sequent power, area, and delay overheads.  

In constrained insertion, instead of inserting a pre-defined 
number of key-gates, the designer inserts key-gates until the 
encrypted design exceeds the allowed power, area, or delay 
limit. A designer can insert a key-gate at a location and calcu-
late the power/area/delay overhead due to that key-gate. If 
the overhead is acceptable, he can insert the key-gate at that 

 
(a) 

 
 (b) 

 
 (c) 

Fig. 9. Overhead for different logic encryption techniques for a key size that results in a HD close to 50% (a)  Power overhead, (b) Delay 
overhead, and (c) Area overhead. 
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location. If not, he can skip that location. Such a method will 
be computationally expensive. Hence, we perform the re-
source-constrained logic encryption in the following way.  

In every iteration, after inserting a key-gate, the designer 
calculates the overhead for encryption. If this overhead is 
within the allowable limit, then he inserts an additional key-
gate and repeats the same process until the limit is exceeded. 
To perform this analysis, we follow the same insertion algo-
rithms listed in Sections 4 and 5, and we stop the insertion 
once the overhead exceeds a pre-defined limit. As an instance, 
we chose a limit of 5%. 

 Fig. 10 shows the HD achieved and the number of key 
gates inserted for different insertion techniques when a de-
signer is constrained to spend only 5% power, delay, and area 
overhead, respectively for logic encryption. One can make the 
following three observations.  

First, for a given overhead, the HD achieved by the fault 
analysis-based method is typically higher than that of the ran-
dom method. This is because the fault analysis-based insertion 
technique accounts for fault activation, propagation, and 
masking effects. In case of delay-constrained insertion (Fig. 
10(b)), inserting a MUX increases the delay by more than 5% 
and thus, no MUX was inserted for some of the designs.  

Second, the HD achieved with XOR/XNOR gates as key-

gates is higher than with MUXes as key-gates because 
XOR/XNOR gates always guarantee fault activation. In addi-
tion, since the power consumption, delay, and area of 
XOR/XNOR gates are smaller than that of MUX, a designer is 
able to insert a higher number of XOR/XNOR gates than 
MUXes for a given budget.  

Finally, in the case of large designs a designer is able to in-
sert more key-gates since the percentage overhead is propor-
tional to the size of the design. Thus, for such designs the in-
serted key-gates were enough to achieve the 50% HD mark 
with the fault-analysis technique. On the other hand, in the 
cases of random insertions, 50% HD was not guaranteed. This 
shows that the power, delay or area overhead spent by a de-
signer on logic encryption would be ineffective if he follows 
the random insertion technique. However, a designer can ef-
fectively reap the benefits of logic encryption on using a fault-
analysis based insertion technique. 

6. DISCUSSION 
6.1 Can we insert key-gates only at the outputs? 

A designer can insert key-gates only at the outputs to ac-
count for fault activation, propagation, and masking. Howev-

(a) 

 (b) 

 (c) 
Fig. 10. Hamming distance achieved for different insertion mechanisms when the allowed overhead for logic encryption is 5%. (a) Power 
constrained, (b) delay constrained, and (c) area constrained. The numbers on top of the bar shows the number of key-gates inserted.  
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er, in such insertions a key-gate will affect only one output-bit. 
The fault analysis-based insertion technique makes use of the 
fan-out structures to identify the best location within the cir-
cuit such that multiple outputs are affected by a single key-
gate. Thus, each output-bit will not be directly correlated with 
a key-bit. Consequently, an attacker cannot determine the key-
bit.  

Fig, 11 shows the number of key-gates, which are required 
to achieve 50% HD that are inserted at the outputs and inside 
the design for different fault analysis-based insertion tech-
niques. One can observe that the number of key-gates required 
to achieve 50% HD on using fault analysis-based insertion 
method is less than the number of outputs in the design. For 
example, consider the design C5315. This design has 123 out-
puts. However, fault analysis-based insertion of XOR/XNOR 
gates requires only 109 XOR/XNOR gates. Similarly, fault 
analysis-based insertion of MUXes requires only 109 gates. Let 
us consider another design C7552. This design has 108 out-
puts. However, fault analysis-based insertion requires 55 and 
102 key-gates for the XOR and MUX approaches, respectively. 
This shows that a designer can find effective places inside the 
circuit, not just at the outputs, to insert key-gates such that the 
50% HD metric is achieved. 

6.2 Security analysis 
 To undermine the security offered by logic encryption, an 
attacker can perform the following attacks: 

1. Brute-force attack: In this attack, an attacker tries all possible 
key combinations until he finds the correct key. However, in-
creasing the key size will make it harder for an attacker to re-
trieve the secret key.  
2. Correcting the wrong output bits: In this attack, an attacker 
can correct the wrong output bits by inverting them. To per-
form this attack, he has to know which output bits are wrong. 
The number of output-bit combinations that the attacker has 
to consider for every input combination dictates the ambiguity 
created for the attacker. This is analogous to traditional cryp-
tography, where the key size dictates the ambiguity for an 
attacker. Table 4 shows the number of output combinations 
that an attacker is forced to consider on an encrypted netlist 
for different logic encryption techniques. It can be seen that 
fault-analysis based logic encryption results in more ambigui-
ty for an attacker than random insertion.  
3. Key-gate removal attack: The attacker can attempt to re-
move the key-gates from the encrypted netlist and replace 
them randomly with a buffer or an inverter. Consider the fol-
lowing case from an attacker’s perspective. An “XOR-
gate+inverter” is inserted into the design for a key-bit of value 
‘1’. On seeing this XOR-gate connected to a key input, an at-
tacker will recognize that the XOR-gate is added for logic en-
cryption. However, on seeing the inverter, he might not know 
whether it is part of the original design (resulting in correct 
key-bit of value ‘0’) or added for logic encryption (resulting in 
correct key-bit of value ‘1’). Thus, this creates a dilemma to an 
attacker. This dilemma is further exacerbated by the synthesis 
tool as it also uses inverters (not for the purpose of logic en-
cryption) while synthesizing a design. In case of MUX-based 
encryption, the attacker can try to connect the true wire with 
the output. But, he does not know which wire is the true wire. 
4.  Retrieving good input-output pairs: An attacker can buy a 
working IC from the market. Thereby, he will have access to 
good input-output pairs of the IC. However, this does not un-
dermine the strength of the proposed logic encryption tech-
nique.  This is because of the following reason. In the logic 
encryption, the fault impact is calculated by considering not 
only the primary inputs and outputs but also considering each 
flip-flop is considered as a pseudo input and as pseudo out-
put. Thus, in the context of logic encryption “good input-

TABLE 4 
NUMBER OF OUTPUT COMBINATIONS THAT AN ATTACKER IS FORCED TO CONSIDER ON AN ENCRYPTED NETLIST FOR VARIOUS TYPES OF 

KEY-GATES AND LOGIC ENCRYPTION TECHNIQUES. (A) ISCAS CIRCUITS AND (B) OPENSPARC CONTROLLERS 
 (a) 

Logic encryption  C432 S510 S641 S838 S5378 C5315 C7552 S9234 

Random–XOR [6,7,11] 35 1.7E+03 2.7E+11 8.2E+08 5.3E+58 2.5E+30 4.9E+22 6.7E+42 
FA-XOR 35 1.7E+03 1.1E+12 1.2E+09 2.3E+67 7.4E+35 2.5E+31 9.1E+73 
Random-MUX 35 1.7E+03 3.7E+10 1.2E+09 5.2E+56 1.8E+21 8.8E+17 9.5E+36 
FA-MUX 35 1.7E+03 1.1E+12 1.2E+09 2.3E+67 2.4E+35 1.7E+30 9.1E+72 

 
(b) 

Logic encryption 
Decoder LSU 

R/W 
FPU 
In 

Excp. 
Handler 

FPU 
Div. 

Store 
buffer 

Inst. Fetch 
queue 

Thread 
switch 

Random–XOR[6,7,11] 1.1E+22 2.9E+44 3.0E+35 5.9E+32 2.5E+50 5.6E+34 6.4E+43 1.7E+41 
FA-XOR 8.1E+26 7.7E+59 5.0E+39 5.4E+52 3.2E+60 1.7E+48 1.8E+72 9.6E+74 
Random-MUX 7.8E+16 3.8E+45 8.8E+30 3.1E+21 1.1E+32 2.8E+25 2.4E+30 1.7E+25 
FA-MUX 8.1E+26 1.9E+56 4.3E+40 2.7E+51 3.2E+60 5.9E+47 3.7E+68 7.3E+73 

 
 

 
Fig. 11. Number of key-gates inserted at the outputs and inside the 
designs for different fault analysis-based insertion techniques. 
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output pairs” include: (1) primary input-primary output pairs, 
(2) primary input-pseudo output pairs, (3) pseudo input-
primary output pairs, and (4) pseudo input-pseudo output 
pairs. After manufacture-testing and validation, the designer 
disables the scan test access port of the IC [28]. Disabling the 
scan access port prevents the access to the flip-flops. Conse-
quently, an attacker cannot access the pseudo-inputs and 
pseudo-outputs. Thus, an attacker on buying a functional IC 
does not have access to primary input-pseudo output pairs, 
pseudo input-primary output pairs, and pseudo input-pseudo 
output pairs. 

6.3 Logic Encryption and PUFs 
The security of any logic encryption technique can be im-

proved by using Physical Unclonable Functions (PUFs) by 
assigning unique unlocking keys to each instance of an IC  
[6,7,11]. PUFs are circuits that exploit inherent physical disor-
ders due to process variations to produce a chip-dependent 
output on applying an input. The technique works as follows: 
The designer embeds a symmetric key cryptographic module 
and a PUF circuit along with the encrypted module. Post-
fabrication, the designer applies an input to the PUF and ob-
tains an output. Simultaneously, the output of the PUF is fed 
into the cryptographic module. This output is used as the key 
for the cryptographic module. This key is burnt into the fuses 
and thus remains non-volatile. Once the designer obtains the 
output from the PUF, the PUF is no longer accessible (one can 
use fuses to shut down the access).  

The designer uses the output of the PUF as the key to cryp-
tographic module. He uses the secret key to unlock the en-
crypted module as the plaintext to the cryptographic algo-
rithm and computes the ciphertext. This ciphertext is then fed 
into the target chip. Inside the target chip, the ciphertext is fed 
into the cryptographic module which uses the PUF’s output as 
the secret key. The output of the cryptographic module will 
then be the secret key to unlock the encrypted design. This is 
fed to unlock the encrypted module. Since the PUF’s output 
will be different on different chips, the ciphertext of one chip 
cannot be used to unlock the design in another chip. 

6.4 Can a logic encryption technique produce wrong 
outputs for only certain inputs? 

If a module produces wrong outputs for a few input pat-
terns, an attacker can still use the module by excluding those 
input patterns. For example, if a processor produces wrong 
outputs for just 2-3 instructions, an attacker can recompile his 
program by excluding those instructions from the instruction 
set. Thus, as highlighted in [11], it becomes necessary to pro-
duce wrong outputs for many input patterns for a random, 
wrong key. 

In general, a designer cannot tune a logic encryption to 
produce wrong outputs only for certain inputs by assuming 
that the attacker will use only those inputs. This is because he 
does not have access to the attacker’s input-set. Thus, a de-
fender has to perform logic encryption based on generic input 
patterns.  

6.5 Limitations 
We generated random input patterns to calculate the fault 

impact of a node in a design. Although this does not cover the 
entire input space, it gives a designer a rough estimate of the 

impact of the fault at that node. However, one can also devel-
op a systematic algorithm to calculate the fault impact rather 
than applying random input patterns by using the proposed 
fault metric as a basis.  

Fault impact metric is only a heuristic and does not guaran-
tee one to achieve 50% HD. However, it enables to reach 50% 
HD as can be seen in Fig. 7, Fig. 8 and Fig. 12. Unlike crypto-
graphic modules, the designs in the benchmark suite and in 
Open SPARC processor do not have a regular structure. Thus, 
one cannot guarantee 50% HD because of the fault masking 
effects described in Section 4.1. 
 In this work, only one key-gate is inserted per iteration. Such 
insertion may be computationally expensive for large designs. 
This method took two hours to encrypt the C7552 circuit. 
However, one can partition the circuit into multiple segments 
and encrypt each of the segments individually to achieve the 
global objective of 50% HD.  
 One can ensure that brute force effort is required to retrieve 
the secret key by formally proving the capability of the logic 
encryption technique. However, such a proof will be design 
dependent. Generating such formal proofs for every design 
may not be practical. The proposed techniques are design in-
dependent and increase the effort for an attacker. 

7 RELATED WORK 
Logic encryption techniques can be broadly classified into 

two types—sequential and combinational. In sequential logic 
encryption, additional logic (black) states are introduced in the 
state transition graph [3, 11, 12]. The state transition graph is 
modified in such a way that the design reaches a valid state 
only on applying a correct sequence of key bits. If the key is 
withdrawn, the design, once again, ends up in a black state. 
However, the effectiveness of these methods in producing a 
wrong output has not been demonstrated. 

 
In combinational logic encryption, XOR/XNOR gates are 

introduced to conceal the functionality of a design [6,7]. Usual-
ly, one of the inputs in these inserted gates serves as a ‘key 
input’ which is a newly added primary input. One can config-
ure these gates as buffers or inverters using these key inputs.  

CLIP introduces process variation sensors into a circuit [5]. 
Post-fabrication, special test vectors are applied to these sen-
sors to determine the impact of process variation. Based on 
this impact, the designer configures these sensors such that 
correct outputs are produced. A wrong configuration results 
in a wrong output. The advantage of this technique is that 
every chip inherently has a unique decryption key. However, 
the maximum HD between the outputs of the correct and 
wrong configurations achieved by this technique is only 18%. 

At the micro-architectural level, processor encryption uses 
the logic encryption capabilities to selectively encrypt units of 
a microprocessor [27], thereby enhancing the capabilities of a 
Trojan detection technique to detect Trojans. It randomly in-
serts the key-gates into the design, i.e. it uses the algorithm 
proposed in [6,7]. It dynamically loads and unloads the key to 
make a unit to function at will. The proposed techniques can 
aid processor encryption to insert key-gates within a micro-
processor unit such that an incorrect key results in an incorrect 
output. 
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Apart from sequential and combinational elements, 
memory elements are also inserted into the design [8]. The 
circuit will function correctly only when these elements are 
configured/programmed correctly. However, the introduction 
of memory elements into the circuit will incur significant per-
formance overhead. 

Techniques such as watermarking and passive metering are 
also proposed to detect IC piracy. In watermarking tech-
niques, a designer embodies his/her signature into the design 
[13]. During litigation, the designer can reveal the watermark 
and claim ownership of the IC/IP. Watermarks are construct-
ed by adding additional states to the finite state machine of the 
design, adding secret constraints during high-level [14], logi-
cal, or physical synthesis [15] steps.   

  In passive metering techniques, a unique device ID for 
every IC is formed leveraging process variations [3]. Physical 
Unclonable functions are leveraged to produce such IDs [17--
19].  If a user pirates an IC, he/she will be caught by tracking 
the device ID. Unfortunately, both watermarking and passive 
metering techniques can only detect piracy but not prevent it; 
only logic encryption techniques can prevent IC piracy. 

8 CONCLUSION 
Fault analysis based logic encryption achieves 50% HD be-

tween the correct and the corresponding wrong outputs when 
an invalid key is applied to the design. While we used only 
one of the cryptographic criteria namely, HD, there are other 
criteria such as Avalanche criterion, Strict Avalanche criterion, 
and Bit independent criterion [20]. Cryptographically strong 
designs (for instance, S-boxes, the primitives of Advance En-
cryption Standard [21]) have to satisfy all these criteria. Evalu-
ation of a logic design against these criteria is computationally 
complex as it requires applying all possible input combina-
tions. Thus, these criterion cannot be directly applied to logic 
design where applying all possible input patterns will be 
computationally inhibitive. To overcome this problem, cryp-
tographic researchers have to develop new techniques to eval-
uate the security of logic encryption.  

In this work, we took the average HD as the assessment cri-
terion.  To overcome the problems of averaging, one can per-
form insertion by assigning weights based on the number of 
inputs that affect the key.  Since we have used a single fault 
simulator, we developed an iterative algorithm to determine 
the fault impact in the presence of fault masking.  Logic en-
cryption can also be performed non-iteratively by using a fault 
simulator that supports multiple stuck-at fault models.  
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